Physical-Mechanism Exploration of the Low-Cycle Unified Creep-Fatigue Formulation

نویسندگان

  • Dan Liu
  • Dirk John Pons
چکیده

Background—Creep-fatigue behavior is identified as the incorporated effects of fatigue and creep. One class of constitutive-based models attempts to evaluate creep and fatigue separately, but the interaction of fatigue and creep is neglected. Other models treat the damage as a single component, but the complex numerical structures that result are inconvenient for engineering application. The models derived through a curve-fitting method avoid these problems. However, the method of curving fitting cannot translate the numerical formulation to underlying physical mechanisms. Need—Therefore, there is a need to develop a new creep-fatigue formulation for metal that accommodates all relevant variables and where the relationships between them are consistent with physical mechanisms of fatigue and creep. Method—In the present work, the main dependencies and relationships for the unified creep-fatigue equation were presented through exploring what the literature says about the mechanisms. Outcomes—This shows that temperature, cyclic time and grain size have significant influences on creep-fatigue behavior, and the relationships between them (such as linear relation, logarithmical relation and power-law relation) are consistent with phenomena of diffusion creep and crack growth. Significantly, the numerical form of “1 − x” is presented to show the consumption of creep effect on fatigue capacity, and the introduction of the reference condition gives the threshold of creep effect. Originality—By this means, the unified creep-fatigue equation is linked to physical phenomena, where the influence of different dependencies on creep fatigue was explored and relationships shown in this equation were investigated in a microstructural level. Particularly, a physical explanation of the grain-size exponent via consideration of crack-growth planes was proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants

Service conditions of turbine blades involve fatigue, creep, and environmental corrosion. Themanner in which these mechanisms interact to initiate cracks is complex. These physicalmechanisms have been observed through observation and measurement of damage in adirectionally-solidified (DS) GTD-111 Ni-base superalloy. Experiments include high temperaturelow cycle fatigue with and ...

متن کامل

An efficient life prediction methodology for low cycle fatigue–creep based on ductility exhaustion theory

Low cycle fatigue–creep is the main reason for the failures of many engineering components under high temperature and cyclic loading. Based on the exhaustion of the static toughness and dissipation of the plastic strain energy during fatigue failure, a new low cycle fatigue–creep life prediction model that is consistent with the fatigue–creep damage mechanism and sensitive to the fatigue damage...

متن کامل

The Unified Creep-Fatigue Equation for Stainless Steel 316

Background—The creep-fatigue properties of stainless steel 316 are of interest because of the wide use of this material in demanding service environments, such as the nuclear industry. Need—A number of models exist to describe creep-fatigue behaviours, but they are limited by the need to obtain specialized coefficients from a large number of experiments, which are time-consuming and expensive. ...

متن کامل

A Novel Viscosity-Based Model for Low Cycle Fatigue Creep Life Prediction of High-Temperature Structures

Damage evolution during low cycle fatigue, creep, and their interaction behavior is actually a ductility exhaustion process in response to cyclic and static creep. In this article, a novel viscosity-based model for low cycle fatigue creep life prediction is presented in an attempt to condition viscosity-based approaches for general use in isothermal and thermo-mechanical loading. In this model,...

متن کامل

A new low cycle fatigue lifetime prediction model for magnesium alloy based on modified plastic strain energy approach

Nowadays, the technology intends to use materials such as magnesium alloys due to their high strength to weight ratio in engine components. As usual, engine cylinder heads and blocks has made of various types of cast irons and aluminum alloys. However, magnesium alloys has physical and mechanical properties near to aluminum alloys and reduce the weight up to 40 percents. In this article, a new ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017